

New Mexico Statistical Analysis Center

Assessing Record Linkage

Matches Using String Distance

Measures

 Prepared by

 Kristine Denman and Vaughn Fortier-Shultz

 Edited by

 Ashleigh Maus

 July 2019

This project was supported by Grant # 2017-BJ-CX-K018 from the State Justice Statistics program. The State Justice Statistics

program is a component of the Office of Justice Programs, which also includes the Bureau of Justice Statistics, the National Institute of

Justice, the Office of Juvenile Justice and Delinquency Prevention, and the Office for Victims of Crime. Points of view or opinions in this

document are those of the author and do not represent the official position or policies of the United States Department of Justice.

Introduction
The New Mexico Statistical Analysis Center (NMSAC) often links records in two or more datasets using

personal identifiers. Typically, the procedure the NMSAC uses is to match by last name, first name, date

of birth (DOB) and the last four digits of the social security number (SSN). However, name changes,

missing data, typing errors, and different formatting standards complicates the matching of records

using exact criteria. Thus, after the initial match, we create and use Soundex name variables to perform

“fuzzy” matching on records that do not initially achieve a deterministic match along with other

identifiers (date of birth, SSN).1 We then loosen the criteria (e.g., Soundex last name, DOB, SSN). After

the matches are completed, staff manually checks each matching name pair and assigns a match value

using a table of commonly encountered discrepancies. This process is time consuming. Therefore, we

explored the efficacy of using string distance algorithms to minimize the amount of time spent on

manual review. This report summarizes our findings.

String distance algorithms
String distance algorithms generate a number representing the disparity between two string variables.

String variables include non-numeric values (letters, commas, spaces, etc.). Here, we examine the use of

string distance algorithms for last and first names.

According to van der Loo (2014), there are three general types of string distance algorithms:

1. Edit-based distances;

2. Q-gram based distances; and

3. Heuristic distances.

Edit-based distances: These measures count the number of discrete edit operations required to turn

one string into another string. Edit-based distances allow one or more of the following operations:

substitution of a character (e.g., a for e), deletion of a character (e.g., Martine -> Martin), insertion of a

character (e.g., Jon -> John), and transposition of two adjacent characters (e.g., Kaira -> Akira). There

are several different measures within this category of algorithms, each of which are calculated using

slightly different criteria. We explored the following:

 Longest Common Substring (LCS) – This measure counts the number of deletions and insertions

required for one string to be transformed into another string. For two strings with lengths x and

y, the LCS varies between 0 (perfect match) and 𝑥 + 𝑦 (no characters in common). It also takes

into account an order-preserved substring of matching characters between the two strings,

hence the name “longest common substring.” For example, consider the names Megan and

Marvin. Maintaining order, it is possible to form the substring {M, A, N} from both names. The

number of leftover letters is the LCS distance: {E, G, R, V, I}, for an LCS of 5. However, if the

names were written as Megna and Marvin, the longest common substring would be {M, N} due

to the order of the letters. The LCS score would then be 7 {E, G, A, A, R, V, I}.

 Levenshtein distance (LV) – Like LCS, this measure counts the number of insertions, deletions,

and substitutions required to transform one string into another string. The minimum distance is

zero for identical strings, while the maximum is bound by the length of the longer string. For a

step-by-step illustration, consider again the case of “Megan” and “Marvin.” Starting with

1 Sample code to create Soundex variables is available in Appendix A.

2

Megan, how many insertions, deletions, and substitutions does it take to arrive at Marvin?

Again, there are many possible routes to consider, but here is one that delivers the most

efficient distance of 4:

Step 1: Megan -> Magan (substitution)

Step 2: Magan -> Mavan (substitution)

Step 3: Mavan -> Marvan (insertion)

Step 4: Marvan -> Marvin (substitution)

Those four steps show us that the Levenshtein distance between these two names is 4.

 Damerau-Levenshtein distance (DL) – This is an extension of the Levenshtein distance which

counts the number of insertions, deletions, and substitutions needed to change one string into

another, but allows for transpositions. The DL distance has the same range of values as the LV

distance, but DL distance would be lower if the difference between two strings is due to one or

more transpositions. For example, the DL value for the difference between “Pendleton” and

“Pendelton” is 1:

Step 1: Pendleton -> “Pendelton” (transposition)

The LV value for the same pair would be 2:

Step 1: Pendleton -> Pendeeton (substitution)

Step 2: Pendeeton -> Pendelton (substitution)

Since there are no transpositions needed to change Marvin to Megan, the DL value would be 4,

like the LV value.

 Optimal String Alignment (OSA) – This measure is a variation of DL. The range of values which

OSA distance can assume is the same as for other edit-based distances. The difference between

OSA and DL is that in OSA, no substring can be edited more than once without penalty. In other

words, each change needed to convert a substring adds a value to OSA. Thus, this value may

exceed DL though these measures are most often the same. Indeed, the values are the same for

the name pairs we have used to date.

An example showing the difference in values (the added penalty with OSA) is the difference

from “Lea” to “Al.”2

For LV, the value would be 2:

Step 1: Al -> La (transposition)

Step 2: La-> Lea (insertion)

The OSA value would be 3, since you cannot make a change to a string more than once (cannot

insert “e” once you have transposed it without an additional step):

Step 1: Al -> L (deletion)

Step 2: L-> Le (insertion)

2 Example adapted from https://en.wikipedia.org/wiki/Damerau%E2%80%93Levenshtein_distance

3

Step 3: Le -> Lea (insertion)

Essentially, DL is the most liberal and LCS is the most conservative of these measures.

Q-gram based distances: This set of measures allows the user to determine the length of the

substrings (q-grams) compared. Q-grams compare substrings of q consecutive characters. This can

range from one to infinity. For example, bigrams are q-grams of length 2 (e.g., “ab”), trigrams are q-

grams of length 3 (e.g., “abc”), etc. The following string distance algorithms use q-grams to determine

string distance.

 Q-gram distance –This measure compares all possible q-grams and returns a value that is a

discrete count of unpaired q-grams between two sets of strings. Thus, a value of 0 means there

are no unpaired strings and any value above that is the number of unpaired strings.

This measure is obtained by comparing the set of q-grams in string 1 to the set of q-grams in

string 2, and counting the number of q-grams that are not shared (i.e., the count of q-grams that

do not appear in both string’s sets of q-grams).

 Q-gram at a value of 1 does not require a preserved order. Thus, when comparing the names

“Diaz” and “Daiz” at a q-gram value of 1, the q-gram distance will equal “0” (a perfect match).

This is because the number of shared letters in each set {Diaz} and {Daiz} are the same even

though they are not in the same order.

At q=2, the total number of possible bigrams between “Diaz” and Daiz” is 6: {Di, ia, az} and {Da,

ai, iz}.3 The q-gram distance for a q-gram of 2 equals 6 because there are no common

substrings. At q=3, the q-gram distance would be 4: there are no common substrings among the

total of four possible trigrams {Dia, iaz} and {Dai, aiz}.

 Jaccard distance – The Jaccard distance is similar to the q-gram distance, but calculates the

number of shared q-grams between two strings (the intersection) divided by the union of all q-

grams in the two strings. The union includes the total number of shared letter sets, plus the

total number of unshared letter sets from each name. The result is subtracted from 1. A perfect

match returns a score of zero, while no shared q-grams returns a score of 1. As with other q-

gram measures, the user defines the number of q-grams (substring lengths) compared.

As an example, compare the names “Joe” and “Jose” setting q=2. “Joe” can be broken down into

the bigrams “jo” and “oe.” “Jose” can be broken down into the bigrams “jo,” “os,” and “se.” The

intersection of these sets is “jo,” the only bigram that appears in both names. The union of

these sets is the set of 4 bigrams {jo, oe, os, se}. The Jaccard distance is Dj = 1 – ¼ = ¾ or .75.

The value ¼ in this equation indicates that there is one common match (“jo”) out of four

possible unique matches. The Jaccard distance is a (ratio) measure whose values range from 0

(perfect match) to 1 (no matches).

4

 Cosine distance – Cosine distances are more difficult to calculate than the other measures

discussed thus far. This measure captures the distance of the angle between two vectors rather

than differences in attributes alone. The measure takes all of the letters from each name

(individually if q is set at 1, in pairs if q is set at 2, etc.), sorts them alphabetically into unique

values, then compares each to the original names to create vectors. The angles of the vectors

are calculated and then subtracted from 1. Like the Jaccard distance, the values range from 0 to

1, with 0 indicating a perfect match.

To begin calculating the cosine distance, first define the q-gram, then identify the set of all

characters which appear at least once in one or both of the strings, and sort them alphabetically.

For example, take the names Megan and Marvin at q=1. The set of all characters which appear

at least once in one or both strings would be, alphabetically, {a, e, g, i, m, n, r, v}. Using this, we

can generate vectors for each string, with entries corresponding to the number of times each

character appears in each string, following the order established in the set of characters from

the previous step. So, for Megan, the corresponding vector would be [1, 1, 1, 0, 1, 1, 0, 0], and

for Marvin, the corresponding vector would be [1, 0, 0, 1, 1, 1, 1, 1].

Figure 1 - Creating Vectors for Character Occurrences

Next, calculate the dot product of the two vectors. Returning to our example of Megan and

Marvin, the two vectors are: [1, 1, 1, 0, 1, 1, 0, 0] and

 [1, 0, 0, 1, 1, 1, 1, 1].

Multiply the corresponding entries, then sum the products:

[(1*1)+(1*0)+(1*0)+(0*1)+(1*1)+(1*1)+ (0*1)+(0*1)]=3.

Next, find the square root of the sum of the squares of the elements in each vector. For 1s and

0s, the squared values equal the original values, and so in our case, we simply take the square

root of the sum of values in each vector:

Megan: √ (12 + 12 + 12 + 02 + 12 + 12 + 02 + 02) = √5

Marvin: √ (12 + 02 + 02 + 12 + 12 + 12 + 12 + 12) =√6

Finally, calculate the cosine distance: 𝐷𝑐𝑜𝑠 = 1 −
3

√5∗√6
≅ 0.4523.

5

R subtracts this value from 1 to preserve consistency with the other string distance algorithms.

Thus, the final reported value for cosine distance ranges from 0 (perfect match, all q-grams are

shared) to 1 (no q-grams in common).

Heuristic Distances: Two measures are included here: the Jaro distance and the Jaro-Winkler distance.

The premise of these measures is that likely matches involve typing errors (mismatches, transpositions)

with keys on the keyboard that are near one another. Errors involving keys that are further apart are

likely mismatches.

 Jaro distance –The Jaro distance measures the number of matching characters in two strings

that are not too far apart on a keyboard, with a penalty for transposed matching characters (van

der Loo: 119). Nonadjacent transpositions are allowed. The Jaro distance reports a value

between 0 (perfect match) and 1 (no matching characters).

The Jaro string distance measure includes a penalty for transpositions. The formula is: 𝐷𝐽𝑎𝑟𝑜 = 1 −

(
1

3
)(

𝑚

𝑥
+

𝑚

𝑦
+

𝑚−𝑡

𝑚
), where x is the length of string 1, y is the length of string 2, m is the number of letters

that match between the strings, and t is the number of transpositions. Transpositions are counted in the

matched number (“m”) if the number of transpositions are equal to or less than the following: the

length of the longer string divided by 2 minus 1.

For example, consider Salvador and Salvadro. The length of each string is 8, and the number of

transpositions allowed is 3 ((8/2)-1). The first six letters {S, A, L, V, A, D} are a perfect match. The last

two letters match if they are transposed. Since one pair is considered one transposition, this example

includes only one transposition and those letters are allowed as a match. Thus, the Jaro distance

𝐷𝐽𝑎𝑟𝑜 = 1 − (
1

3
) (

8

8
+

8

8
+

8−1

8
) =

23

24
= 0.042.

 Jaro-Winkler distance – This measure is an extension of the Jaro distance. Jaro-Winkler modifies

the formula by incorporating a penalty for mismatches among the first 4 characters. Winkler’s

rationale was that people entering data are less likely to make mistakes in the first 4 characters,

or that errors in the first 4 characters are more likely to be noticed and corrected (van der Loo:

119). As such, the Jaro-Winkler distance is less forgiving on such errors, believing that they may

likely present evidence that the strings are not a good match.

Jaro-Winkler is an extension of the Jaro measure, but adds a penalty. The user assigns the

weight of the penalty, p, which is constrained between 0 and 0.25. Winkler also introduces the

variable l, denoting the length of the longest common prefix between the two strings, up to 4

characters in length. Then, the Jaro-Winkler distance is equal to 𝐷𝐽𝑊 = 𝐷𝐽𝑎𝑟𝑜 ∗ (1 − (𝑝)(𝑙)); in

other words, it’s equal to the difference between the Jaro distance and the Jaro distance times

the product of the penalty weight and the prefix length. When p is equal to zero, the Jaro-

Winkler distance is the same as the original Jaro distance.

6

Like the Jaro measure, the Jaro-Winkler measure is a proportion ranging from 0 (a good match)

to 1 (a non-match).

Using the example above, the Jaro-Winkler distances for the pair {Salvador, Salvadro} are calculated at

different values of p. The longest common prefix has a length of 6, but the formula only allows up to 4:

p=0: Same as Jaro distance, 0.042

p=0.10: 𝐷𝐽𝑊 = (0.042) ∗ (1 − (0.10)(4)) = (0.042) ∗ (0.60) = 0.0252

p=0.20: 𝐷𝐽𝑊 = (0.042) ∗ (1 − (0.20)(4)) = (0.042) ∗ (0.2) = 0.0084

p=0.25: 𝐷𝐽𝑊 = (0.042) ∗ (1 − (0.25)4) = (0.042) ∗ (0.00) = 0.000

If p=0.25 is selected, any string pair with the same first 4 letters will return a Jaro-Winkler distance of 0.

Data and methods
The purpose of the study is to evaluate whether we could use the string distance measures defined

above to minimize manual matching. The data used in this study consists of 2,880 unique pairs of last

names and 2,562 unique pairs of first names that were not perfect matches. Several key variables are

included. First, for each name pair, SAC staff assigned a match score. Scores range from 0 to 88. A

match score of “0” indicates there is not a match, while scores of “1” (not included here) indicate a

perfect match. Scores beginning with 2 (e.g., 21) are probable matches while scores beginning with 3 are

possible matches, but more suspect. We weigh scores beginning with 3 less heavily than scores in the

20s when determining whether a true match has been found. While we assign different values to

matches that fall within the 20s range or 30s range, this is simply for us to know why the match differs

and does not indicate strength of a match within those ranges. Finally, a score of “88” indicates data are

missing from one or both records. For this analysis, several staff members assigned the match scores.

Staff agreed on most scores, but some were re-evaluated and a final decision made.

A second variable included in this dataset is whether or not the name pair includes a Soundex match.

We typically search for matches using Soundex variables. We wanted to explore whether the inclusion

of Soundex matches in conjunction with the string distance measures improved the accuracy of the

predicted match.

Third, for each name pair, we calculated the string distance measures described above. The user must

make decisions about cutoffs for q-gram and the Jaro-Winkler measures. For each of the q-gram

measures, we calculated the distance for q=1, q=2, and q=3. For the Jaro-Winkler measure, the user

defines a penalty/weight. We used: 0 (which returns the same score as obtained using Jaro), .10 and

.20.

Finally, we calculated the difference between the lengths of each name included in the sample. In other

words, we computed how many characters were in name 1 and in name 2 and calculated the difference.

In addition to the primary dataset used to calculate and explore the string distance measures, we used a

small dataset of first name pairs and one with last name pairs to confirm the results. The first dataset

consisted of 71 imperfect last name pairs, and the second of 51 imperfect first name pairs.

7

Manual match scores
Summarized in Table 1 below is the distribution of last name match scores overall and by Soundex

match. The first column indicates the number assigned by staff, the second is a definition of that

number. Staff deemed just over half of the last name pairs as a non-match. Approximately one-third of

the last names were considered probable matches. These differences were typically due to minor

misspellings, hyphenated names in reverse order, the inclusion of a suffix in one field, or partial name

match when compound names were present. Less likely matches, those coded as “3,” account for 8% of

the sample. These include names that could be the same, but are less certain. This accounts for

problems that arise because fields are truncated or differences due to adding a letter in one name and

omitting it from the second (Martine vs. Martin).

The last two columns summarize the matche scores by whether the pair has a Soundex match. The

majority of names with a Soundex match are associated with a good match score while most of those

without a Soundex match have a match score of “0.” However, if we used only this algorithm without

the additional step of manual checking, we would include 20% of cases that are not true matches and

miss 26% that are likely or possible matches. Thus, while Soundex matching is useful, we must check the

results to ensure accuracy.

Table 1 - Last name match score frequencies

Last name
match score

Description of match score All cases Soundex
matches

Soundex
does not
match

0 Not a match (Clearly different names, unlikely to be
typing error/truncation of field)

55.7% 20.3% 74.1%

21 Probable match (e.g., minor misspelling, hyphenated
names in which the order is switched)

15.6% 40.9% 8.0%

22 Probable match (hyphenated name/one part of
name matches, Jones-Smith vs. Jones; suffix in one
and not the other, e.g., Jones III vs. Jones)

20.5% 30.0% 2.4%

3 Possible match (e.g., could be a good match, but
unsure as when field is truncated, e.g., Martin vs.
Martinez)

8.3% 8.8% 15.5%

N 2880 987 1893

Table 2 summarizes the match scores for the first name pairs. The coding scheme is slightly different

from those used for last names. As can be seen there, approximately one-third of the first name pairs in

our sample are not good matches. Another 31% were assigned a score of “20” indicating that the match

is very likely- there is just a minor misspelling or even the inclusion of a space in one name and not the

other (e.g., Maryjo vs. Mary Jo). Another common discrepancy is the use of a nickname rather than a

full name (John/Johnny). One discrepancy that occurs reflects the population in New Mexico. That is,

we have a relatively high Hispanic population. In some instances, the same individual’s name will be

recorded as the Spanish version of the English name or vice versa. For example, one dataset may

identify someone as Michael, and the other identifies the same person as Miguel. While people typically

choose one version over the other, it is not unusual for people to go by a different version depending on

the circumstances.

8

Table 2 - First name match score frequencies

First name
match score

Description of match score All cases Soundex
match

Soundex
non-
match

0 Not a match: Include names that are clearly different
(Joseph/Jolene; Clarence/Clarise; Joseph/Jordan;
Joseph/Jacob; Jerry/Randy), even if they begin with
the same letter.

33.6% 14.9% 43.2%

20 Probable match: minor misspelling (John/Jon), one
letter off or very common misspellings
(Stephen/Steven). This does not include names that
are distinct names in their own right (Andres/
Andrea; Adam/Adan). While distinct names could be
spelling errors, these are be coded differently (see
32 below).

30.7% 51.2% 20.1%

21 Probable match: names that are very similar in
Spanish and English (Christine vs. Christina; Julie vs.
Julia; Robert vs. Roberto; Thomas vs. Tomas).
Include only those that suggest a spelling error. Do
not include Spanish versions of names that are
significantly different from English (Juan/John),
which do not suggest a spelling error.

1.6% 3.5% 0.6%

22 Probable match: suffix (one or the other has jr., sr.,
III, etc.).

0.7% 0.6% 0.7%

23 Probable match: middle name included one of the
first name variables (ex: Richard Joe vs. Richard).

7.8% 3.9% 9.8%

24 Probable match: names reversed (middle name and
first name reversed; last and first name reversed).

0% 0% 0%

25 Probable match: nicknames (e.g., Johnny vs. John);
diminutive version of names (Isabel, Isabella).

11.0% 3.7% 14.7%

30 Possible match: same name has very different
spelling (EG, Lewis/Louis, Damian/Damien,
Kaytlin/Caitlin), not just a spelling error.

3.9% 6.7% 2.4%

31 Possible match: Spanish version of English name or
vice versa (Juan/John; Esteban/Steven) that are
clearly not a spelling error.

3.9% 4.0% 3.8%

32 Possible match: similar names but not the same (Lee
versus Leo; Adam vs. Adan.

4.9% 6.1% 4.3%

33 Possible match: Names that are similar, but
correspond to a different gender (could be a
misspelling, but could be a completely different
name). E.g., Angela vs. Angelo or Angel/Angelo

2.0% 5.3% 0.4%

Procedures
Staff calculated string distances using the stringdist package in R. The matched pair data was exported

from SPSS as a .csv and read into RStudio. We used a modified version of Raffael Vogler’s R script4 to

4 https://www.joyofdata.de/blog/comparison-of-string-distance-algorithms/, accessed 12/5/2018

https://www.joyofdata.de/blog/comparison-of-string-distance-algorithms/

9

generate the string distances for a range of string-distance algorithms. The string distance scores for

each match pair were exported as .csv and imported back into SPSS (see instructions in Appendix A).

Next, the investigators conducted exploratory analyses to identify string distance algorithms (e.g.,

Jaccard, OSA), and combinations of algorithms that correlated with various match scores. In the results

section below, rather than include all analyses conducted, we describe only the measures we found that

best correlate with the manual match scores.

Results
We compared the various algorithms against the manual check of the data to assess which measure,

combinations of measures, and cutoff scores were associated with each match score. We analyzed the

first name and last name match pairs separately, and found slightly different results for each. Our

analyses focused on minimizing errors (either false positives or false negatives) and maximizing true

positive and negative results. Our goal was to include measures that had an error rate of 2% or less; we

chose this error rate because it is approximately the same as the manual match error rate. Regardless of

whether we assessed first or last name pairs, we found that we could not rely on a single measure to

effectively identifying most matches and non-matches. Rather, combinations of measures were best.

Last Names

We found seven measures, described below, that appear to identify the majority of good and non-

matches.5 The error rate in this sample for each measure varied from a low of 0% to a high of 2.2% (just

slightly higher than the target error rate).

Likely true matches

We found three measures or combination of measures provided results that were likely true matches.

Table 3 summarizes the results; the sections that follow describe each measure.

Table 3 – String distance measures for likely true last name matches

 Measure 1 Measure 2 Measure 3
Last name match
score

N LCS <=2 LCS >= 3 & diff length
last names and
qgram 2 <=1

OSA <=1 and Jarro <=.12

0 1607 2% 2% 0%

21 442 82% <1% 95.3%

22 589 1% 88% 0%

3 242 14% 10% 4.7%

N 2880 509 619 379

5 We identified some other measures that also identified good and bad matches, but the number of cases captured
by these measures was smaller and overlapped with the measures we describe. Measures that identified good
matches were: cosine set at 1 or 2 with a value <=.2; Jaccard set at 1 with a value <=.30; and Jaccard set at 2 with a
value <=.40. Measures that identified bad matches were: cosine set at 0 >= .75; and Jaccard set at 0 with a value
>= .80.

10

1) LCS less than or equal to 2

The first of these is LCS with a cutoff less than or equal to 2, indicating that two or fewer

transformations are required to change one name to another. With this cutoff, we identified 98% of

likely or probable matches, with an error rate of 2%. As might be expected, most of the matches made

were “21,” which is a minor misspelling or similar error. Approximately 14% of the cases with this cutoff

were associated with a manual score of “3” or a probable match.

1) LCS >=3 and difference between length of last 2 names and qgram 2 <=1

Last names have unique characteristics that make it challenging to identify a match when one likely

exists. For example, many people have hyphenated or compound surnames. One data source may list

only one of the names, while the other lists both. This second measure appears to work well for

identifying names like this.

The measure incorporates the difference in the length of last names and compares that to the q-gram

set at 2 (bigram comparisons). Specifically, when the difference between the last names and the bigram

comparison is less than or equal to one and the LCS is greater than or equal to 3, this measure is

positive. The vast majority of cases that fall into this category are at least probable matches, and 88% of

the cases in this category correspond to a manual match score of “22,” indicating a hyphenated name in

one data source corresponding to a single last name in the second source.

Since both measures 1 and 2 use different LCS cutoff scores in the calculation, the two measures are

mutually exclusive. Thus, they identify different sets of good matches.

2) OSA <=1 and Jarro (or JW0) <=.12.

The final measure is OSA <=1 with a JW set at 0 that is less than or equal to .12. All of the cases were at

least a probable match, with 95% of those associated with manual match score of “21” indicating a very

minor misspelling or difference. Although this measure was impeccable, the number of cases that fell

into this category was lower than those cases captured by the other two measures.

Combining true match results for last names

In practice, we would combine these results. Since measure 3 was never associated with a non-match,

we would use this to identify probable matches, with possible matches (those in which we have slightly

less confidence) falling into the measure 1 but not captured in measure 3. The second measure never

overlaps with the other two measures. This measure we would consider a likely match for hyphenated

names (probable match) and a possible match for names that don’t include a hyphen. The decisions are

summarized below:

Table 4 – Combined string distance measures for true last name matches

 OSA <=1 & JW <=.12 (measure 3)

 In this category Not in this category

Yes, LCS <=2 (measure
1)

379- probable
matches

130- possible matches

Yes, LCS >=3 diff qg2
<=1 (measure 2)

0 619-
If hyphenated: probable matches for compound names
If not hyphenated: Possible match

11

Likely non-matches

Of the name pairs left after calculating the measures above, manual checks identified 90% as non-

matching. The error rate of false negatives with just the measures above would be 10%, which is above

our threshold of 2%. Thus, we explored combinations of algorithms that would better identify cases

that were likely non-matches. We found five such measures.

Table 5 – Measures for predicted non-matching last names

 Measure 1 Measure 2 Measure 3 Measure 4 Measure 5
Last
name
match
score

N differences
between length
of names and
LCS, dl, or
qgram2 is >=6
for at least 2 of
these measures

JW with penalty
of .10 is .3 or
higher and diff
in length of
names is 4 or
less

Qgram1 >= 5
and diff last
names <=3

LCS >= 4 & 4 or
more of
Cosine or
jaccard =1

Jaccard 0
>=.80

0 1607 98% 97.8% 99.0% 99.7% 100%

21 442 1% .6% .1% 0% 0%

22 589 <1% .8% .1% 0% 0%

3 242 1% .9% .8% .3% 0%

N 2880 1054 906 895 749 416

1) Differences between length of names and lcs, dl, or qgram2 is >=6 for at least 2 of these

measures

The first of these measures calculates the difference between the lengths of the two names and LCS, DL,

or Q-gram set at 2. If two or more of these measures is greater than or equal to 6, this measure is

computed as “yes” (likely wrong). With this measure, we found a very low error rate: 2% false negative.

2) Jaro-Winkler with a penalty of .1 is .3 or higher and difference in length of names is 4 or less

The second measure of likely non-matches uses the Jaro-Winkler statistic with a penalty set at .10. If

this results in a score of .3 or higher and the difference in the length of the names is 4 or less, the

measure is computed as “yes.” The false negative rate is slightly higher than the first measure, at 2.2%,

but still very low.

3) Q-gram set at 1 >= 5 and difference in the length of last names <=3

This measure flags those cases that have a q-gram set at 1 (checking each letter) with a value of 5 or

higher (5 or more letters differ) and have a difference in the length of the last names that is less than or

equal to 3. Using this measure, there is a false negative rate of 1%; in other words, this measure

correctly classifies 99% of the cases that fit these criteria.

4) LCS >= 4 & 4 or more of Cosine or Jaccard at any q-gram =1

A fourth measure makes use of multiple algorithms. We calculate this measure is “yes” if LCS is 4 or

higher, and four or more of the following have a value of 1: cosine, jaccard (at 1 2 or 3). This means

that among those names that take 4 or more steps to convert, once we compare pairs (ab, bc) or groups

of three (abc, bcd) there are no common groups. Thus, it makes sense that the error rate would be

12

minimal; it is just .3% for cases coded as a possible match. One could omit the restriction of an LCS >=4;

the error rate would just slightly increase to .8%. However, the number of cases is not that different

(756 vs. 749) and increasing the number of cases increases the error.

5) Jaccard 0 >=.80

Finally, the Jaccard measure set at 0 compares all letters that are the same relative to the union of all

letters. Using a cutoff of .80 or higher, all of the cases in this set are non-matches. However, fewer cases

fall into this category than the other measures. Thus, while the measure outperforms all the others, this

measure alone will not account for the majority of non-matching names.

Combining string distance measures to identify non-matches for last names

Unlike the first two “true match” measures, all of these “non-match” measures overlap. When all

measures were taken into account (i.e., one or more “non-match” measures indicated a non-match), he

error rate was 2.4%. As one might expect, the accuracy increased with the number of measures that

match. When just one measure indicated a non-match, the error rate was 7.1%. This was lower for

cases identified by 2 measures, at 4.3%. At 3, the error rate declined to just 1.2%, and if 4 or 5 measures

indicated a non-match, the error rate was 0% (see table below).

Table 6 – Combined measures for non-match last name matches

 Possible non-match Probable non-match

 Number of measures predicting non-matches
Last name match score 1.00 2.00 3.00 4.00 5.00

0 92.9% 95.7% 98.8% 100.0% 100.0%

21 0.4% 2.4% 0.0% 0.0% 0.0%

22 2.0% 0.8% 0.3% 0.0% 0.0%

3 4.7% 1.2% 0.9% 0.0% 0.0%

N 255 255 336 258 243

As seen above, the error rate with a single measure was higher than our target of 2%, but the error rate

decreased with an increasing number of measures that predicted a non-match. Thus, in practice, we

would identify those that match with just 1 or 2 measures as a possible non-match and those with a

score of 3 or higher as a probable/likely non-match.

Confirmation of last name match scores

We confirmed the match criteria with small dataset of 71 non-perfect last name matches. The predicted

true matches were perfect. The predicted non-matches had an error rate of 3.2%, higher than what we

would like. However, like the results above, if we separate this variable into 1 or 2 measures versus 3 or

more, we get an error rate of 0% for cases in the latter category. This suggests that we should identify

probable and possible matches from this variable. We did not have any overlap in good and bad

measures in this dataset.

13

Table 8 – Confirmation of last name match algorithms

 Predicted
true match
overall

Predicted
possible
true match

Predicted
probable
true match

Predicted
non-match
overall

Probable
non-match

Possible
non-match

No match
made

 0 0% 0% 0% 96.8% 100% 88.9% 64.3%

21 61.5% 66.7% 60.9% 0% 0% 0% 0%

22 30.8% 33.3% 34.8% 3.2% 0% 11.1% 28.6%

3 7.7% 0% 4.3% 0% 0% 0% 7.1%

N 26 3 23 31 22 9 14

First names

Like last names, first names have some unique problems. Perhaps among the most challenging are the

use of a nickname in one dataset but not the other (e.g., Mike and Michael) and both Spanish and

English versions of names used by an individual (e.g., Michael and Miguel). Another common but

difficult problem is the inclusion of a middle name in the first name field that is absent from the other

dataset (e.g., Mary Jo and Mary).

Likely true matches

We began our analysis by using the same combination of measures for true and non-matches as we did

for last names. The results are in Table 9 below. As can be seen there, the measures of “true” matches

were generally effective. Measure 1, LCS <=2, had a match rate of 98.5%, with an error rate of false

positives at 1.5%; this measure included 1092 cases. As observed in the last names analysis, Measure 3

had an error rate of 0%, with 793 cases included in this category for the first name pairs. Measure 2 had

the highest error rate at 2.9%. However, the majority of cases that were identified using this measure

were “23” (one name includes the middle name, and the second does not such as Mary Jo vs. Mary) or

“25” (one name is a nickname, such as Joe and Joseph).

Table 9 – String distance measures for likely true first name matches

 All Predicted true match

 Measure
1

Measure 2 Measure 3

First name match
score

N LCS <=2 LCS >= 3 & difference between length of
names and qgram 2 <=1

OSA <=1 and Jarro
<=.12

0 861 1.5% 2.9% 0%

20 783 66.6% 1.1% 75.0%

21 40 3.3% 0% 4.2%

22 17 .5% 1.3% 0%

23 (middle
included)

199 3.6% 53.1% 1.6%

25 (nicknames) 280 4.0% 34.7% 1.8%

30 98 4.3% 0% 2.9%

31 99 1.3% 4% 0.3%

32 125 10.3% 0% 9.1%

33 51 4.7% 0% 5.2%

N 2553 1092 277 793

14

Combining likely true match results for first names

As we observed with last names, some of these measures overlap. In practice, we would combine these

to create a “probable” match and “possible” match, which is slightly less likely to be a match. All 793

cases captured with Measure 3 were also captured with Measure 1. We would consider these probable

matches. Those captured by Measure 1 only we would consider possible matches, as would those

captured by Measure 2. These decisions are summarized below.

Table 10 – Combined string distance measures for true first name matches

 OSA <=1 & JW <=.12 (measure 3)

 In this category Not in this category

Yes, LCS <=2 (measure 1) 793- probable match 299- Possible match

Yes, LCS >=3 diff qg2 <=1 (measure 2) 0 277- Possible match

Likely non-matches

The predicted non-matches had a higher error rate (false negatives) than we observed with the last
names. Whereas the error rate for Measure 2 (JW with a penalty of .10 is >= .3 and difference in length
of names is 4 or less) is 2.2% for last names, here it is 5.9%. Measure 2 has the highest error rate,
regardless of whether we are assessing last name pairs or first name pairs. For first names, the errors
are primarily for cases categorized as “25” (nicknames versus full name) or “31” (Spanish/English pairs).

Table 11 - Measures for predicted non-matching first names

 Measure 1 Measure 2 Measure 3 Measure 4 Measure 5

First

name

match

score

N differences between

length of names and

lcs, dl, or qgram2 is

>=6 for at least 2 of

these measures

JW with penalty

of .10 is .3 or

higher and diff in

length of names

is 4 or less

LCS >=4 & 4

or more of

cosine or

jaccard = 1

Cosine set at

0 >= .75

Jaccard set at

0 >= .80

0 861 96% 94.1% 96.3% 99.2% 99.4%

20 783 0% 0% .2% 0% 0%

21 40 0% 0% 0% 0% 0%

22 17 0% 0% 0% 0% 0%

23 199 0% .4% 0% 0% 0%

25 280 1.9% 2.4% 1.2% 0% 0%

30 98 .2% .3% .3% 0% 0%

31 99 2.0% 2.8% 1.8% 0.8% 0.6%

32 125 0% 0 0% 0% 0%

33 51 0% 0 0% 0% 0%

N 2553 594 712 596 239 322

15

As we found for last names, when the number of non-match measures is three or more, the error rate is
very low. However, for those that have only one or two matches, the error rate is much higher. Neither
the inclusion of Soundex matches nor the inclusion of gender matches helped to distinguish between
good and non-matches (not shown in table below). Like last names, in practice, we would identify a
probable non-match as those with three or more non-match measures and a possible non-match as
those with only one or two non-match measures.

Table 12 – Combined measures for non-match first name matches

 Non-match first name
 Possible non-

match
Probable non-match

First name match score 1.00 2.00 3.00 4.00 5.00

0 (not a match) 62.6% 89.9% 98.4% 98.9% 99.5%

20s (probable match) 21.2% 3.4% 1.0% 0% 0%

30s (possible match) 16.2% 6.7% 0.5% 1.1% 0.5%

N 99 179 191 87 217

Confirmation of matches

As we did with the last names, we confirmed whether these measures worked with a second dataset.

The overall error rates for first names were: 23% for predicted true matches (false positives) and 8.7%

for predicted non-matches (false negatives). However, none of the “probable” matches for either good

or non-matches had known false positives or false negatives (the error rate was 0%). Further, most of

the probable true matches fell into the manual match 20’s category (likely match) rather than the 30s

category (possible match).

Table 13 – Confirmation of first name match algorithms

First
name
match
score

Predicted
true match
overall

Probable
true match

Possible
true match

Predicted
non-match
overall

Probable
non-match

Possible
non-match

No match
made

 0 23.5% 0% 42.9% 91.3% 100% 87.1% 64.1%

20s 51.0% 73.9% 32.1% 0% 0% 0% 10.3%

30s 25.5% 26.1% 25.0% 8.7% 0% 12.9% 25.6%

N 51 23 28 46 48 31 39 (28.7%
no match
made)

Conclusion
We found multiple measures and combinations of measures best identify likely matches and likely non-

matches. While the “possible” measures worked less reliably for first names when tested on a small

confirmation dataset, the “probable” measures worked very well. This indicates we would have to be

very careful with the possible matches. Typically, we use a combination of criteria to decide whether

16

there is a true match (names, DOB, SSN). We would flag “probable” matches to check if any of the other

variables (DOB, SSN) do not match.

There are likely other combinations of measures that we did not identify here that could be used. Our

goal was to create measures that would identify matches and non-matches while minimizing false

positives and false negatives while identifying as many cases as possible as a match or non-match. The

proportion of cases that did not result in a likely positive or negative choice ranged from 15% in the first

name dataset to 20% of last names. As we work more with string distance measures, we may discover

reliable cutoffs that will minimize the unknown rate and improve the error rate. Despite this, calculating

the string distance measures is a relatively simple process, and by using SPSS syntax, we can create

variables to categorize our decisions based on these measures. This process will save us many hours of

manual checking of data.

17

Appendices

18

Appendix A – Sample Soundex Matching SPSS Code

This set of code creates a last name variable that is all uppercase

STRING lastnamefixed (A23).

COMPUTE lastnamefixed= (ltrim(rtrim(upcase(lname)))).

EXECUTE.

STRING LN1 (A1).

COMPUTE LN1=CHAR.SUBSTR(lastnamefixed,1).

EXECUTE.

this next set of commands is to get rid of any leading non-alphabet characters

STRING lastnamefixed2 (A23).

compute lastnamefixed2=Char.Substr(lastnamefixed,2).

execute.

do if (LN1='A').

compute lastnamefixed2=lastnamefixed.

else if (LN1='B').

compute lastnamefixed2=lastnamefixed.

else if (LN1='C').

compute lastnamefixed2=lastnamefixed.

else if (LN1='D').

compute lastnamefixed2=lastnamefixed.

else if (LN1='E').

compute lastnamefixed2=lastnamefixed.

else if (LN1='F').

compute lastnamefixed2=lastnamefixed.

else if (LN1='G').

compute lastnamefixed2=lastnamefixed.

else if (LN1='H').

compute lastnamefixed2=lastnamefixed.

else if (LN1='I').

compute lastnamefixed2=lastnamefixed.

else if (LN1='J').

compute lastnamefixed2=lastnamefixed.

else if (LN1='K').

compute lastnamefixed2=lastnamefixed.

else if (LN1='L').

compute lastnamefixed2=lastnamefixed.

else if (LN1='M').

compute lastnamefixed2=lastnamefixed.

else if (LN1='N').

compute lastnamefixed2=lastnamefixed.

else if (LN1='O').

compute lastnamefixed2=lastnamefixed.

19

else if (LN1='P').

compute lastnamefixed2=lastnamefixed.

else if (LN1='Q').

compute lastnamefixed2=lastnamefixed.

else if (LN1='R').

compute lastnamefixed2=lastnamefixed.

else if (LN1='S').

compute lastnamefixed2=lastnamefixed.

else if (LN1='T').

compute lastnamefixed2=lastnamefixed.

else if (LN1='U').

compute lastnamefixed2=lastnamefixed.

else if (LN1='V').

compute lastnamefixed2=lastnamefixed.

else if (LN1='W').

compute lastnamefixed2=lastnamefixed.

else if (LN1='X').

compute lastnamefixed2=lastnamefixed.

else if (LN1='Y').

compute lastnamefixed2=lastnamefixed.

else if (LN1='Z').

compute lastnamefixed2=lastnamefixed.

end if.

execute.

* break the name into characters/individual variables, make the first letter the first character of soundex

string.*

string a1 to a23 (a1) soundex1 (a23).

do repeat a=a1 to a23/b=1 to 23.

compute a=substr(lastnameFixed2,b,1).

end repeat.

execute.

* add numbers to soundex string.*

* drop spaces, H, W and non-alpha characters which were recoded to '' .*

compute soundex1=a1.

recode a2 to a23 ('A', 'E', 'I', 'O', 'U', 'Y' = '0')('B', 'F', 'P', 'V' ='1')

 ('C', 'G', 'J', 'K', 'Q', 'S', 'X', 'Z' = '2')

 ('D', 'T' = '3')('L' = '4')('M', 'N' = '5')('R' = '6')(else='').

execute.

do repeat a=a2 to a23.

if a ~= '' soundex1=concat(ltrim(rtrim(soundex1)),a).

end repeat.

execute.

20

* Now, combine any double numbers into a single instance of that number.*

string pl cl (a1) soundex2 (a23).

loop x=1 to 23.

compute cl=substr(soundex1,x,1).

if cl ~= pl soundex2=concat(ltrim(rtrim(soundex2)),cl).

compute pl=cl.

end loop.

execute.

* Further, if the first number in the Soundex value is the same as the code number for

* the initial letter, delete the first number*

string codea1 (a1).

compute codea1 = A1.

Recode codea1 ('A', 'E', 'I', 'O', 'U', 'Y' = '0')('B', 'F', 'P', 'V' ='1')

 ('C', 'G', 'J', 'K', 'Q', 'S', 'X', 'Z' = '2')

 ('D', 'T' = '3')('L' = '4')('M', 'N' = '5')('R' = '6')(else='').

execute.

string soundex3 (a20).

compute soundex3=soundex2.

if CODEA1=a2

soundex3=concat(substr(soundex2,1,1),substr(soundex2,3)).

execute.

* Now, remove all zeros from the Soundex string.*

string soundex4 (a20).

loop x=1 to 20.

compute cl=substr(soundex3,x,1).

if cl ~= '0' soundex4=concat(ltrim(rtrim(soundex4)),cl).

end loop.

EXECUTE.

* Finally, return the first four characters of the end product as the Soundex encoding.

* If there are less than four characters to be returned, concatenate enough zeros to make the length

four.*

string soundexlast (a4).

compute soundexlast=soundex4.

if length(ltrim(rtrim(soundexlast)))=3 soundexlast=concat(ltrim(rtrim(soundexlast)),'0').

if length(ltrim(rtrim(soundexlast)))=2 soundexlast=concat(ltrim(rtrim(soundexlast)),'00').

if length(ltrim(rtrim(soundexlast)))=1 soundexlast=concat(ltrim(rtrim(soundexlast)),'000').

execute.

drops extra variables from file

match files file=*/drop=lastnamefixed

21

LN1 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13

 a14 a15 a16 a17 a18 a19 a20 a21 a22 a23 soundex1

 pl cl soundex2 x codea1 soundex3 soundex4.

execute.

22

Appendix B – Match Quality Manual Review Tables

Table B.1 – Manual first name match scores

First

name

Perfect - 1 1 - Perfect match, 1-to-1 correspondence between characters

 Probable - 2 20 - Probable match: minor misspelling (John/Jon), one letter off or very

common misspellings (Stephen/Steven). Don’t include names that are distinct

names in their own right (Andres/ Andrea; Adam/Adan).

 21 - Probable match: names that are very similar in Spanish and English

(Christine vs. Christina; Julie vs. Julia). Include only those that suggest a

spelling error. Do not include Spanish versions of names that are significantly

different from English (Juan/John), which do not suggest a spelling error

 22 - Probable match: suffix (one or the other has jr., sr., III, etc.)

 23 - Probable match: middle name included in the first name variable and but

not the other first name variable (ex: Richard Joe vs. Richard)

 24- Probable match: names reversed (middle name and first name reversed;

last and first name reversed)

 25 - Probable match: nicknames (e.g., Johnny vs. John); diminutive version of

names (Isabel, Isabella)

 Possible - 3 30- Possible match: same name has very different spelling (EG, Lewis/Louis,

Damian/Damien, Kaytlin/Caitlin), not just a spelling error

 31 -Possible match - Spanish version of English name or vice versa (Juan/John;

Esteban/Steven) that are clearly not a spelling error

 32- Possible match- similar names but not the same (Lee versus Leo; Adam vs.

Adan, could be misspelling but if these could be a name in their own right,

code here

 33- Possible match- Names that are similar, but correspond to a different

gender (could be a misspelling, but could be a completely different name).

E.g., Angela vs. Angelo or Angel/Angelo

 Not good - 0 0 - Not a true match. Include names that are clearly different (Joseph/Jolene;

Clarence/Clarise; Joseph/Jordan), names more than three characters apart;

names that are clearly not a spelling error

 Missing - 88 88 – Info missing from one or both fields

23

Table B.2 – Manual last name match scores

Last

name

1 - Perfect

match

1 - Perfect match. 1-to-1 correspondence. Include here differences in

punctuation (such as Smith-Jones and Smith Jones) as the name is the same.

 2 - Probable

match

21 - Probable match (e.g., minor misspelling, hyphenated names in which

the order is switched: jones-smith vs. smith-jones)

 22 - Probable match (hyphenated name/one part of name matches, Jones-

Smith vs. Jones; suffix in one and not the other, e.g., Jones III vs. Jones)

 3 - Possible

match

3 - Possible match (e.g., could be a true match, but not entirely sure (ex:

Martin vs. Martinez)

 0 - Not a true

match

0 - not a true match (clearly different names, names more than three

characters off)

 88 - missing

information

88 - info missing from one or both fields

24

Appendix C– String Distance Algorithm Procedure

Part 1 – Running the R Script

1. Export matched records from SPSS as .csv file. Since the original datasets were matched by

Soundex first and last names, we will want the original first and last name variables.

2. Read into RStudio (Under “Environment” tab in upper-right quadrant, click “import dataset” ->

to read in a .csv, click “From Text (base)” -> select the file -> if first row of .csv is column names,

select “Heading: Yes” -> shouldn’t have to change any of the defaults options for the other

settings, so click “Import”).

3. Open the R script.

A sample script for last names is as follows:
lastsamp <- new.name.set.to.verify.algrthms$last1
lastkey <- new.name.set.to.verify.algrthms$last2
getwd()
setwd("")
#####Comparing string similarities for last names
M <- data.frame(
 m = c("osa", "lv", "dl", "lcs", "qgram", "qgram", "qgram",
 "cosine", "cosine", "cosine", "jaccard", "jaccard", "jaccard",
 "jw", "jw", "jw"),
 q = c(0,0,0,0,1,2,3,1,2,3,1,2,3,0,0,0),
 p = c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1,0.2)
)

R <- apply(M, 1,
 function(m) stringdist(lastsamp, lastkey, method=m["m"], q=m["q"], p=m["p"]))

R2 <- round(R,3)

rownames(R2) <- paste(format(paste("'", lastsamp, "'", sep=""), width=14), " - ",
 format(paste("'", lastkey, "'", sep=""), width=17), sep=""
)

colnames(R2) <- M$m
write.csv(R2, "lastnamesnew.csv")

Part 2 – Getting the String Distances Back into SPSS

1. The .csv files created by R in the previous part will have the records all in the same order as they

were in the original SPSS dataset, assuming that order was preserved in the .csv file exported

from SPSS. (If you didn’t sort the files at any point in this process, the records will be in the same

order throughout.) As such, the first record in “lastnames” corresponds to the first record in

“firstnames” corresponds to the first record in the original SPSS dataset; the second record in

“lastnames” corresponds to the second record in “firstnames” corresponds to the second record

25

in the original SPSS dataset; … ; the nth record in “lastnames” corresponds to the nth record in

“firstnames” corresponds to the nth record in the original SPSS dataset.

Because of this, it’s easy to assemble all the data in one dataset via a number of techniques.

Depending on preference and intent, you could try one of the following examples, though there

are plenty more ways to do it:

Example 1. Read “lastnames.csv” and “firstnames.csv” into SPSS. Generate a variable in each of

those datasets consisting of a sequence of increasing integers (ie, 1, 2, …, n), such that

corresponding rows in both datasets have the same unique integer value associated with them.

Create this variable identically in the SPSS dataset containing the original records. Since each

integer will be uniquely associated with the same record in each dataset, you can merge by this

variable to create a dataset containing the data from the original SPSS file, from

“lastnames.csv,” and from “firstnames.csv.”

Example 2. In the original SPSS file, insert new variables, one for each string distance algorithm,

and simply copy the values from the corresponding column in the .csv into the SPSS file. SPSS

won’t love this for large datasets, but it will comply. NOTE: if using this method with the .csv

files open in Excel, do not copy the column name from the .csv file. Excel puts column names in

the first row of data, whereas SPSS stores column names separately from the data.

2. Check a few cases to confirm that the correct string distances are associated with the

corresponding records.

3. You now have an SPSS dataset containing all the original data, along with the string distance

algorithms for each pair of first and last name variables in the dataset. If it looks good, click save.

